Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Two crystalline modifications of 1,1'-thiobis(2-naphthol)

Joel T. Mague,^a* Maravanji S. Balakrishna,^b Banudhar Punji^b and Devarajan Suresh^b

^aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and ^bDepartment of Chemistry, Indian Institite of Technology Bombay, Powai, Mumbai 400 076, India

Correspondence e-mail: joelt@tulane.edu

Received 8 June 2007 Accepted 4 July 2007 Online 26 July 2007

The title compound, $C_{20}H_{14}O_2S$, has been obtained in two monoclinic forms, which differ in their unit-cell dimensions, compactness of packing and conformation. Pairwise association of molecules occurs *via* complementary $O-H\cdots O$ hydrogen bonding.

Comment

1,1'-Thiobis(2-naphthol), (I), has been obtained in two crystalline forms (Fig. 1, and Tables 1 and 3) with distinctly different unit cells.

At first sight, form (Ia), with a short *a* axis, appears to exhibit a more compact packing than does form (I*b*), with a short *b* axis, as is depicted in Figs. 2 and 3. However, simulated radial distribution functions of the two structures indicate a larger number of intermolecular contacts in the 3.5–5.0 Å range, suggesting that (I*b*) possesses a slightly more compact structure. Despite this, four contacts of 3.349 (2)–3.490 (2) Å occur between atom S1 and atoms C12–C15 in the neighboring molecule at (x + 1, y, z) in (Ia), whereas in (Ib), atom S1 forms contacts with only atom C5 in the molecule at (x, y + 1, z), at a distance of 3.344 (2) Å. These S···C contacts propagate parallel to *a* in (I*a*) and parallel to *b* in (I*b*).

Additionally, besides the H1···O2 hydrogen bond that is seen in both forms (Tables 2 and 4), the pattern of potential interactions of atom H2 with its surroundings differs between (Ia) and (Ib). In the former, there is an intermolecular contact of 2.46 (3) Å with atom O1ⁱⁱ [O2-H2···O1ⁱⁱ = 134 (3)°; symmetry code: (ii) -x + 1, -y, -z] and an intramolecular contact of 2.41 (2) Å with atom S1 [O2-H2···S1 = 125 (2)°], while in the latter, the closest contacts are both intramolecular $[H2\cdots O1 = 2.50 (2) \text{ Å} \text{ and } O2-H2\cdots O1 = 104 (2)^\circ;$ $H2\cdots S1 = 2.40 (2) \text{ Å} \text{ and } O2-H2\cdots S1 = 126 (2)^\circ].$ In both instances, the H2 \cdots S1 contacts are comparable to previously reported O-H \cdots S hydrogen bonds (Allen *et al.*, 1997). The torsional orientation of the O2-H2 bond in both forms suggests a weak bifurcated hydrogen bond.

In both forms, the naphthyl groups are planar to within 0.004–0.01 Å, with dihedral angles between the mean planes of 100.0 (1)° for (Ia) and 96.5 (1)° in (Ib). Modest differences in the overall conformations of the molecule between the two forms are also seen in the C2–C1–S1–C11 and C12–C11–S1–C1 torsion angles, which are -64.8 (2) and 112.5 (2)°, respectively, in (Ia) and -60.5 (2) and 105.6 (2)°, respectively, in (Ib).

Figure 1

A perspective view of (*Ib*). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn arbitrarily small for clarity.

Figure 2 The molecular packing for (Ia), viewed down the *b* axis.

Figure 3 The molecular packing for (Ib), viewed down the *b* axis.

Experimental

Form (I*a*) was obtained in an attempt to grow crystals of Fe{ η^5 -C₅H₄P[-OC₁₀H₆(μ -S)C₁₀H₆O-]} (Punji *et al.*, 2007) from a mixture of dichloromethane and petroleum ether. Form (I*b*) was obtained in an attempt to crystallize {[-OC₁₀H₆(μ -S)C₁₀H₆O-]P(=S)}₂{ μ -[-OC₁₀H₆(μ -S)C₁₀H₆O-]} (Punji *et al.*, 2007) in a similar fashion. Both were additionally characterized by comparison of their melting points with that of an authentic sample.

Form (Ia)

Crystal data

$C_{20}H_{14}O_2S$	V = 1464.7 (3) Å ³
$M_r = 318.37$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 4.8053 (6) Å	$\mu = 0.23 \text{ mm}^{-1}$
b = 11.420 (1) Å	T = 100 (2) K
c = 26.732 (3) Å	$0.22 \times 0.10 \times 0.07 \text{ mm}$
$\beta = 93.181 \ (2)^{\circ}$	

Data collection

Refinement

reginentent	
$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$wR(F^2) = 0.106$	independent and constrained
S = 1.01	refinement
3339 reflections	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
216 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

12389 measured reflections

 $R_{\rm int} = 0.052$

3339 independent reflections 2472 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °) for (Ia).

S1-C11	1.780 (2)	S1-C1	1.780 (2)
C11-S1-C1	104.60 (9)		

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$) for (Ia).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O1 - H1 \cdots O2^i$	0.83 (3)	2.00 (3)	2.826 (2)	171 (3)

Symmetry code: (i) -x, -y, -z.

Form (Ib)

Crystal data C₂₀H₁₄O₂S

$C_{20}H_{14}O_2S$	$V = 1460.59 (15) \text{ Å}^3$	
$M_r = 318.37$	Z = 4	
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation	
a = 13.6508 (9) Å	$\mu = 0.23 \text{ mm}^{-1}$	
b = 5.2192 (3) Å	T = 100 (2) K	
c = 21.265 (1) Å	$0.20 \times 0.09 \times 0.05 \text{ mm}$	
$\beta = 105.409 \ (1)^{\circ}$		

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2007) $T_{min} = 0.922, T_{max} = 0.988$ 23840 measured reflections 3330 independent reflections 2828 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of
$vR(F^2) = 0.091$	independent and constrained
S = 1.09	refinement
3330 reflections	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
216 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 3

Selected geometric parameters (Å, $^{\circ}$) for (Ib).

S1-C11	1.784 (2)	S1-C1	1.787 (2)
C11-S1-C1	102.73 (9)		

Table 4

Hydrogen-bond geometry (Å, $^{\circ}$) for (Ib).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1\!-\!H1\!\cdots\!O2^i$	0.86 (3)	1.90 (3)	2.7581 (19)	175 (3)

Symmetry code: (i) -x + 2, -y + 1, -z + 2.

H atoms attached to C atoms were placed in calculated positions (C-H = 0.95 Å) and included as riding contributions, with $U_{iso}(H)$ values of $1.2U_{eq}$ of the attached C atoms. H atoms attached to O atoms were refined with isotropic displacement parameters.

For form (Ia), data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus*; molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*. For form (Ib), data collection: *APEX2* (Bruker, 2006); cell refinement: *APEX2*; data reduction: *SAINT-Plus* (Bruker, 2006); molecular graphics: *APEX2*; software used to prepare material for publication: *APEX2*. For both compounds, program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997).

We thank the Chemistry Department of Tulane University for support of the X-ray laboratory and the Louisiana Educational Quality Support Fund administered by the Louisiana Board of Regents for the purchase of the CCD diffractometer under grant No. LEQSF (2002-03)-ENH-TR-67.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3098). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 680–695.
- Bruker (2000). *SMART* (Version 5.625) and *SHELXTL* (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). SAINT-Plus. Version 6.35A. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). APEX2 (Version 2.1-0) and SAINT-Plus (Version 7.34A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Punji, B., Mague, J. T. & Balakrishna, M. S. (2007). In preparation.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2002). SADABS. Version 2.05. University of Göttingen, Germany.
- Sheldrick, G. M. (2007). SADABS. Version 2007/2. University of Göttingen, Germany.